Finite Temperature Quantum Effects in Many-body Systems by Classical Methods

نویسندگان

  • Jeffrey Wrighton
  • James Dufty
  • Sandipan Dutta
چکیده

6 Acknowledgments 8 A recent description of an exact map for the equilibrium structure and thermodynamics of a quantum system onto a corresponding classical system is summarized. Approximate implementations are constructed by pinning exact limits (ideal gas, weak coupling), and illustrated by calculation of pair correlations for the uniform electron gas and shell structure for harmonically confined charges. A wide range of temperatures and densities are addressed in each case. For the electron gas, comparisons are made to recent path integral Monte Carlo simulations (PIMC) showing good agreement. Finally, the relevance for orbital free density functional theory for conditions of warm, dense matter is discussed briefly.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Current Issues in Finite-T Density-Functional Theory and Warm-Correlated Matter

Finite-temperature density functional theory (DFT) has become of topical interest, partly due to the increasing ability to create novel states of warm-correlated matter (WCM). Warm-dense matter (WDM), ultra-fast matter (UFM), and high-energy density matter (HEDM) may all be regarded as subclasses of WCM. Strong electron-electron, ion-ion and electron-ion correlation effects and partial degenera...

متن کامل

Topological order of mixed states in correlated quantum many-body systems

Topological order has become a new paradigm to distinguish ground states of interacting many-body systems without conventional long-range order. Here, we discuss possible extensions of this concept to density matrices describing statistical ensembles. For a large class of quasithermal states, which can be realized as thermal states of some quasilocal Hamiltonian, we generalize earlier definitio...

متن کامل

Making Classical Ground State Spin Computing Fault-Tolerant

We examine a model of classical deterministic computing in which the ground state of the classical system is a spatial history of the computation. This model is relevant to quantum dot cellular automata as well as to recent universal adiabatic quantum computing constructions. In its most primitive form, systems constructed in this model cannot compute in an error-free manner when working at non...

متن کامل

Quantum Chemistry at Finite Temperature

In this article, we present emerging fields of quantum chemistry at finite temperature. We discuss its recent developments on both experimental and theoretical fronts. First, we describe several experimental investigations related to the temperature effects on the structures, electronic spectra, or bond rupture forces for molecules. These include the analysis of the temperature impact on the pa...

متن کامل

Belief propagation algorithm for computing correlation functions in finite-temperature quantum many-body systems on loopy graphs

Belief propagation—a powerful heuristic method to solve inference problems involving a large number of random variables—was recently generalized to quantum theory. Like its classical counterpart, this algorithm is exact on trees when the appropriate independence conditions are met and is expected to provide reliable approximations when operated on loopy graphs. In this paper, we benchmark the p...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015